

Pump-Probe Studies of Atomic Inner-Shell Photoionization and Vacancy Decay

Steve Southworth
Workshop on Time Domain Science Using X-Ray Techniques
Aug 29 - Sep 1, 2004

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Laser-pump X-ray-probe studies of atomic inner-shell physics

- Scientific motivations
- First results at APS beamline 7ID
- Instrumentation and methods
- Future scientific directions
- Suggestions for advanced capabilities at the APS

Collaborators

Atomic Physics Group

Bob Dunford, Dave Ederer, Elliot Kanter, Bertold Krässig, Steve Southworth, Linda Young (ANL-CHM)

Juana Rudati (ANL-APS)

X-ray Optics

Eric Dufresne (ANL-APS)
Peter Eng (Geo-CARS, U. Chicago)

Ultrafast Laser

David Reis, Matt DeCamp, Emily Peterson (U Michigan)

Eric Landahl (ANL-APS)

Rob Crowell, Dave Gosztola (ANL-CHM)

Predicted high-field modification of Kr x-ray absorption edge

Field-free

Kr 1s \rightarrow 5p, 6p, ..., ϵ p

Ponderomotive shift of continuum

 U_p = e²E²/4mω² ≈1 eV for 800 nm laser at 1.6 × 10¹³ W/cm²

Strong-field ionization

≈2 × 10¹⁴ W/cm²

 $Kr^+ 1s \rightarrow 4p, 5p, 6p, ..., \epsilon p$

Photoionization and vacancy decay across threshold

- Bound and continuum intermediate states
- Post-collision interactions
- Final-state sticking probabilities
- Unknown dressed-atom effects

Our first pump-probe experiment at APS beamline 7ID

High field (≈10¹⁴ W/cm²) of optical laser (1.55 eV) ionizes Kr 4p electron

X ray (14.3 keV) excites 1s electron to 4p hole

Beamline 7ID laser system - June 2004

1.1 km APS storage ring 352 MHz RF, 1296 buckets 272 kHz, 3.68 μs

oscillator: 88 MHz, 1 nJ, 50 fs amplifier: 1 kHz, 1 mJ, 50 fs

laser-xray timing jitter ≈2 ps

focusing to ≈10 μm spot required for 10¹³–10¹⁴ W/cm² regime

7ID x-ray beam path

Focused laser and x-ray beams overlapped in space and time through atomic-gas target

Kirkpatrick-Baez x-ray microfocus mirrors

Viewing and overlapping focal spots

- Focus x rays to center of chamber
- Locate x-ray centroid with BGO
- Overlap focused laser

-rough: BGO crystal

-fine: in-vacuum cross hairs

Measuring overlap of focused laser and x-ray beams

Scan 10 µm cross-hair

X-rays: monitor current electrically isolated cross-hair

Laser: monitor scattered light pixel sum from a selected region on CCD camera

June 2004:

Laser waist $\approx 30 \ \mu m$ Rayleigh range $\approx 3 \ mm$ X-rays $\approx 13 \ \mu m$ Crossing angle $\approx 20 \ \mu m/mm$

APS ring fill pattern with isolated bucket

Kr ion time-of-flight spectroscopy

Mechanical chopper transmits singlet x-ray pulses

≈80,000 rpm air-bearing rotor drive frequency phase locked to ring RF transmits 1 singlet x-ray pulse out of 102 transmitted flux ≈ $(8 \times 10^{-4}) \times \text{total flux}$ KB-focused flux ≈ 4×10^{5} x-rays/pulse

Chopper selects singlet x-ray pulses @ 2.66 kHz Laser @ 887 Hz : 1 laser-on vs 2 laser-off

0.51 mm slot50.8 mm diameter2.45 μs open time

X-ray probe of laser-produced Kr⁺

1s → 4p resonance in laser-produced Kr⁺

887 Hz laser pulses 2661 Hz x-ray pulses on/off = 0.5

Kr⁺ theory: L. Pan and D.R. Beck

Coulomb explosion of Kr⁺ ion assembly

focal volume $\approx 30 \ \mu m \ dia \times 3 \ mm \ long$ intensity $\approx 6 \times 10^{14} \ W/cm^2$ atom density $\approx 10^{13}/cm^3$ $\rightarrow 10^7 \ ions/pulse$

10 eV Kr⁺ ion velocity ≈ 40 μm/ns

→ study dynamics of ion assembly by varying x-ray probe delay

similar to Coulomb explosion of laser-ionized clusters

tunable x-ray probe ≈10 µm spatial resolution ≈100 ps temporal resolution

Laser upgrades in progress at beamline 7ID

- Dedicated laser hutch
- Ti:sapphire regenerative amplifier
- Diode-pumped solid-state pump laser
- Compressed pulses 2.5 mJ, 40 fs 10 ps
- Stretched pulses 4.0 mJ, 130 ps
- Repetition rate 1 5 kHz

→ Higher peak intensity, higher rep rate, and complete overlap of x-ray pulses (87 ps) for dressed-atom experiments

Future directions: atoms → small molecules

Alignment, molecular geometry, coherent control

Marcos Dantus

Tamar Seideman Steve Pratt Stefan Vajda

Aligning molecules with laser pulses
H. Stapelfeldt and T. Seideman
Rev. Mod. Phys. **75**, 543 (2003)

courtesy of E. C. Landahl

Femtosecond-laser pulse energy vs. repetition rate

Considerations for improved pump-probe capabilities

Repetition rate

Storage-ring bunch patterns
Mechanical or x-ray-optical choppers
High-power laser oscillators

X-rays/pulse

high stored current in singlets pink-beam experiments

X-ray focusing with high throughput

KB mirrors
Li lens
zone plates

APS x-ray pulse width

Shorter x-ray pulse enables dressed-atom experiments at higher laser intensity

Develop APS capability for pump-probe experiments using soft x rays

- Lower-Z atoms at lower x-ray energies
- Longer lifetimes → better resolved resonance and threshold structure
- Fewer electrons → simpler decay spectra
- Larger cross sections
- Can do high-resolution electron spectroscopy, but x-ray spectroscopy more challenging

